

DNA & Genes

The Human Genome and Inheritance

Khushbu Shrivastava Gupta Editor @MedicPresents Master of Technology (M.Tech.), Biotechnology

What is the human genome?

Simply, the different types of sequences that make up the total DNA of a human cell

- 3 billion base pairs
- about 22 000 genes
- Only 2 % of the DNA encode proteins
- Genes include exons and introns
- 50 % repeated sequences (called "junk DNA")

- 23 chromosome pairs \rightarrow 46 chromosomes
- 44 autosomes, 2 sex chromosomes
- X and Y -chromosomes
- $\cdot XX \rightarrow female$
- $\cdot XY \rightarrow Male$

	\sum					An encoder
1	2		3		4	5
	the part of	CO-CO-CO-CO-CO-CO-CO-CO-CO-CO-CO-CO-CO-C	(and the second	actor a	構成	
6	7	8	9	10	11	12
		or and the second se		()-410 ()-410	2010	VER
13	14	15		16	17	18
*	が設置	ł	8	66		
19 Karyoty	20 jpe:46,XX		21	22	×	Y

Chromosomes carrying the same genes are called homologous

Mutations

- Heard of those mutants in Hollywood movies? Well, this is what it is
- Alterations in DNA sequence
- Some are normal DNA variation
- Caused by chemical and physiological agents and errors in DNA replication
- Cells can repaire some mistakes
- If not repaired, changes in DNA sequence are made permanent by DNA replication

Point mutations:

Single base mutations:

- 1. Missense mutation: leads to an amino acid change
- 2. Silent mutation: does not change the amino acid
- 3. Nonsense mutation: causes premature stop-codon

- Frameshift mutations:
 - insertion/deletion dublication
 - translocation
 - →Altered reading frame
 → Severe impacts on protein structure

Passing on the genetic information:

- Information passed on in the sexual reproduction
- Needed for new characteristics to develop
- Offspring recieve genes by inheriting chromosomes

Two important terms...

Phenotype: The outlook of an organism

Genotype: The genetic information written in DNA

Phenotypes

GCCAAGAATGGCTCCCACCT GGCTCTCAGACATTCCCCTGG TCCAACCCCCAGGCCATCAAG ATGTCTCAGAGAGGCGGCTAG ACACCCAGAGACCTCAAGTGA CCATGTGGGAACGGGATGTTT CCAGTGACAGGCA

All somatic cells • 23 chromosome pairs

- (46 chromosomes)
- Diploid cells, 2n

Sperm cell
23 chromosomes
Haploid cell, n

Egg cell • 23 chromosomes • Haploid cell, n

A chromosome pare:

©Addison Wesley Longman, Inc.

- · A locus
- An allele

<u>Mitosis</u>

- Division of somatic cells
- Products two daughter cells from one parent cell
- The number of chromosomes does not change
- DNA duplicates before entering the mitosis
- MITOSIS DNA Replication Cell Division

Takes 1-2 hours

Meiosis

- Only in gamete formation
- One diploidic parent cell produces four haploid gametosytes
- Mature gametocytes have 23 chromosomes (n)

Crossing-over and recombination during meiosis

 Chromatids change parts between homologous chromatids during the meiosis

 Causes redistribution of heridary material between the homologous chromosomes

- → number of genes doesn't change
- → new allele combinations are formed

Inherited diseases

- DNA mutations are significant in development of diseases
- Inherited diseases are caused by mutations passed from a parent to a offspring
- Monogenic diseases: disease is caused by one mutation in one gene
- Multifactionial diseases: disease is caused by interaction of different mutations and environmental factors

• Mendelian inheritance: Presence or absence of the phenotype depends on the genotype at a single locus

- Dominant character: only one allele needed to cause the phenotype (heterozygous)
- **Recessive** character: both allels needed to cause the phenotype (homozygous)

Autosomal dominant inheritance:

Autosomal recessive inheritance:

X-chromosome linked recessive inheritance:

X-chromosome linked dominant inheritance:

