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Retinal Area Detector From Scanning Laser
Ophthalmoscope (SLO) Images for Diagnosing

Retinal Diseases
Muhammad Salman Haleem, Liangxiu Han, Jano van Hemert, Baihua Li, and Alan Fleming

Abstract—Scanning laser ophthalmoscopes (SLOs) can be used
for early detection of retinal diseases. With the advent of latest
screening technology, the advantage of using SLO is its wide field
of view, which can image a large part of the retina for better diag-
nosis of the retinal diseases. On the other hand, during the imaging
process, artefacts such as eyelashes and eyelids are also imaged
along with the retinal area. This brings a big challenge on how to
exclude these artefacts. In this paper, we propose a novel approach
to automatically extract out true retinal area from an SLO image
based on image processing and machine learning approaches. To
reduce the complexity of image processing tasks and provide a
convenient primitive image pattern, we have grouped pixels into
different regions based on the regional size and compactness, called
superpixels. The framework then calculates image based features
reflecting textural and structural information and classifies be-
tween retinal area and artefacts. The experimental evaluation re-
sults have shown good performance with an overall accuracy of
92%.

Index Terms—Feature selection, retinal artefacts extraction,
retinal image analysis, scanning laser ophthalmoscope (SLO).

I. INTRODUCTION

EARLY detection and treatment of retinal eye diseases is
critical to avoid preventable vision loss. Conventionally,

retinal disease identification techniques are based on manual
observations. Optometrists and ophthalmologists often rely on
image operations such as change of contrast and zooming to
interpret these images and diagnose results based on their own
experience and domain knowledge. These diagnostic techniques
are time consuming. Automated analysis of retinal images has
the potential to reduce the time, which clinicians need to look
at the images, which can expect more patients to be screened
and more consistent diagnoses can be given in a time efficient
manner [1].

The 2-D retinal scans obtained from imaging instruments
[e.g., fundus camera, scanning laser ophthalmoscope (SLO)]
may contain structures other than the retinal area; collectively
regarded as artefacts. Exclusion of artefacts is important as a
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Fig. 1. Example of (a) a fundus image and (b) an SLO image annotated with
true retinal area and ONH.

preprocessing step before automated detection of features of
retinal diseases. In a retinal scan, extraneous objects such as
the eyelashes, eyelids, and dust on optical surfaces may appear
bright and in focus. Therefore, automatic segmentation of these
artefacts from an imaged retina is not a trivial task. The purpose
of performing this study is to develop a method that can exclude
artefacts from retinal scans so as to improve automatic detection
of disease features from the retinal scans.

To the best of our knowledge, there is no existing work re-
lated to differentiation between the true retinal area and the
artefacts for retinal area detection in an SLO image. The SLO
manufactured by Optos [2] produces images of the retina with a
width of up to 200◦ (measured from the centre of the eye). This
compares to 45◦−60◦ achievable in a single fundus photograph.
Examples of retinal imaging using fundus camera and SLO are
shown in Fig. 1. Due to the wide field of view (FOV) of SLO
images, structures such as eyelashes and eyelids are also imaged
along with the retina. If these structures are removed, this will
not only facilitate the effective analysis of retinal area, but also
enable to register multiview images into a montage, resulting in
a completely visible retina for disease diagnosis.

In this study, we have constructed a novel framework for the
extraction of retinal area in SLO images. The three main steps
for constructing our framework include:

1) determination of features that can be used to distinguish
between the retinal area and the artefacts;

2) selection of features which are most relevant to the clas-
sification;

3) construction of the classifier which can classify out the
retinal area from SLO images.

For differentiating between the retinal area and the artefacts,
we have determined different image-based features which re-
flect grayscale, textural, and structural information at multiple
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resolutions. Then, we have selected the features among the large
feature set, which are relevant to the classification. The feature
selection process improves the classifier performance in terms
of computational time. Finally, we have constructed the classi-
fier for discriminating between the retinal area and the artefacts.
Our prototype has achieved average classification accuracy of
92% on the dataset having healthy as well as diseased retinal
images.

The rest of this paper is organised as follows. Section II in-
troduces the previous work for feature determination and classi-
fication. Section III discusses our proposed method. Section IV
provides the quantitative and visual results of our proposed
method. Section V summarizes and concludes the method with
future work.

II. LITERATURE SURVEY

Our literature survey is initiated with the methods for de-
tection and segmentation of eyelids and eyelashes applied on
images of the front of the eye, which contains the pupil, eyelids,
and eyelashes. On such an image, the eyelashes are usually in the
form of lines or bunch of lines grouped together. Therefore, the
first step of detecting them was the application of edge detection
techniques such as Sobel, Prewitt, Canny, Hough Transform [3],
and Wavelet transform [4]. The eyelashes on the iris were then
removed by applying nonlinear filtering on the suspected eye-
lash areas [5]. Since eyelashes can be in either separable form or
in the form of multiple eyelashes grouped together, Gaussian fil-
ter and Variance filter were applied in order to distinguish among
both forms of eyelashes [6]. The experiment showed that sepa-
rable forms of eyelashes were most likely detected by applying
Gaussian filter, whereas Variance filters are more preferable for
multiple eyelash segmentation [7]. Initially, the eyelash can-
didates were localized using active shape modeling, and then,
eight-directional filter bank was applied on the possible eyelash
candidates. Kang and Park [8] used focus score in order to vary
the size of convolution kernels for eyelash detection. The size
variation of the convolution kernels also differentiated between
separable eyelashes and multiple eyelashes. Min and Park [9]
determined the features based on intensity and local standard
variation in order to determine eyelashes. They were thresh-
olded using Otsu’s method, which is an automatic threshold se-
lection method based on particular assumptions about intensity
distribution. All of these methods have been applied on CASIA
database [10], which is an online database of Iris images. In an
image obtained from SLO, the eyelashes show as either dark or
bright region compared to retinal area depending upon how laser
beam is focused as it passes the eyelashes. The eyelids show as
reflectance region with greater reflectance response compared to
retinal area. Therefore, we need to find out features, which can
differentiate among true retinal area and the artefacts in SLO
retinal scans. After visual observation in Fig. 1(b), the features
reflecting the textural and structural difference could have been
the suggested choice. These features have been calculated for
different regions in fundus images, mostly for quality analysis.

The characterisation of retinal images were performed in
terms of image features such as intensity, skewness, textural

analysis, histogram analysis, sharpness, etc., [1], [11], [12]. Dias
et al. [13] determined four different classifiers using four types
of features. They were analyzed for the retinal area including
colour, focus, contrast, and illumination. The output of these
classifiers were concatenated for quality classification. For clas-
sification, the classifiers such as partial least square (PLS) [14]
and support vector machines (SVMs) [15] were used. PLS se-
lects the most relevant features required for classification. Apart
from calculating image features for whole image, grid analysis
containing small patches of the image has also been proposed
for reducing computational complexity [11]. For determining
image quality, the features of region of interest of anatomical
structures such as optic nerve head (ONH) and Fovea have also
been analyzed [16]. The features included structural similarity
index, area, and visual descriptor etc. Some of the above men-
tioned techniques suggest the use of grid analysis, which can
be an time effective method to generate features of particular
region rather than each pixel. But grid analysis might not be an
accurate way to represent irregular regions in the image. There-
fore, we decided the use of superpixels [17]–[20], which group
pixels into different regions depending upon their regional size
and compactness.

Our methodology is based on analyzing the SLO image-based
features, which are calculated for a small region in the retinal
image called superpixels. The determination of feature vector
for each superpixel is computationally efficient as compared
to feature vector determination for each pixel. The superpixels
from the images in the training set are assigned the class of
either retinal area or artefacts depending upon the majority of
pixels in the superpixel belonging to the particular class. The
classification is performed after ranking and selection of features
in terms of effectiveness in classification. The details of the
methods are discussed in the following section.

III. METHODOLOGY

The block diagram of the retina detector framework is shown
in Fig. 2. The framework has been divided into three stages,
namely training stage, testing and evaluation stage, and deploy-
ment stage. The training stage is concerned with building of
classification model based on training images and the annota-
tions reflecting the boundary around retinal area. In the testing
and evaluation stages, the automatic annotations are performed
on the “test set” of images and the classifier performance is eval-
uated against the manual annotations for the determination of
accuracy. Finally, the deployment stage performs the automatic
extraction of retinal area.

The subtasks for training, testing, and deployment stages are
briefly described as follows:

1) Image Data Integration: It involves the integration of im-
age data with their manual annotations around true retinal
area.

2) Image Preprocessing: Images are then preprocessed in
order to bring the intensity values of each image into a
particular range.

3) Generation of Superpixels: The training images after
preprocessing are represented by small regions called
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Fig. 2. Block diagram of retina detector framework.

superpixels. The generation of the feature vector for each
superpixel makes the process computationally efficient as
compared to feature vector generation for each pixel.

4) Feature Generation: We generate image-based features
which are used to distinguish between the retinal area
and the artefacts. The image-based features reflect tex-
tural, grayscale, or regional information and they were
calculated for each superpixel of the image present in the
training set. In testing stage, only those features will be
generated which are selected by feature selection process.

5) Feature Selection: Due to a large number of features,
the feature array needs to be reduced before classifier
construction. This involves features selection of the most
significant features for classification.

6) Classifier Construction: In conjunction with manual an-
notations, the selected features are then used to construct
the binary classifier. The result of such a classifier is the
superpixel representing either the “true retinal area” or the
“artefacts.”

7) Image Postprocessing: Image postprocessing is per-
formed by morphological filtering so as to determine the
retinal area boundary using superpixels classified by the
classification model.

The elements of our detection framework are discussed as
follows.

A. Image Preprocessing

Images were normalized by applying a Gamma (γ) adjust-
ment to bring the mean image intensity to a target value. γ was
calculated using

γ =
log10(μtarget) − log10(255)
log10(μorig ) − log10(255)

(1)

where μorig is the mean intensity of the original image and
μtarget is the mean intensity of the target image. For image

visualization, μtarget is set to 80. Finally, the Gamma adjustment
of the image is given as

Inorm =
(

I

255

)γ

. (2)

B. Generation of Superpixels

The superpixel algorithm groups pixels into different regions,
which can be used to calculate image features while reducing the
complexity of subsequent image processing tasks. Superpixels
capture image redundancy and provide a convenient primitive
image pattern. As far as fundus retinal images are concerned,
the superpixels have been generated for analyzing anatomical
structures [21] and retinal hemorrhage detection [22]. For reti-
nal hemorrhage detection, the superpixels were generated using
watershed approach but the number of superpixels generated in
our case need to be controlled. The watershed approach some-
times generates number of superpixels of the artefacts more than
desired. The superpixel generation method used in our retina de-
tector framework is simple linear iterative clustering [17], which
was shown to be efficient not only in terms of computational
time, but also in terms of region compactness and adherence.
The algorithm is initialized by defining number of superpixels
to be generated. The value was set to 5000 as a compromise
between computational stability and prediction accuracy.

C. Feature Generation

After the generation of superpixels, the next step is to de-
termine their features. We intend to differentiate between the
retinal area and artefacts using textural, grayscale gradient, and
regional based features. Textural and gradient based features are
calculated from red and green channels on different Gaussian
blurring scales, also known as smoothing scales [23]. In SLO
images, the blue channel is set to zero; therefore, no feature
was calculated for the blue channel. The regional features are
determined for the image irrespective of the colour channel. The
details of these features are described as follows

1) Textural Features: Texture can be analyzed using Haral-
ick features [24] by gray level co-occurrence matrix (GLCM)
analysis. GLCM determines how often a pixel of a gray scale
value i occurs adjacent to a pixel of the value j. Four angles
for observing the pixel adjacency, i.e., θ = 0◦, 45◦, 90◦, 135◦

are used. These directions are shown in Fig. 3(a). GLCM also
needs an offset value D, which defines pixel adjacency by certain
distance. In our case, offset value is set to 1. Fig. 3(b) illustrates
the process of creating GLCM using the image I. The features,
which are calculated using GLCM matrix are summarized in
Table I. The mean value in each direction was taken for each
Haralick feature and they were calculated from both red and
green channels.

2) Gradient Features: The reason for including gradient fea-
tures was illumination nonuniformity of the artefacts. In order
to calculate these features, the response from Gaussian filter
bank [23] is calculated. The Gaussian filter bank includes Gaus-
sian N (σ), its two first-order derivatives Nx(σ) and Ny (σ) and
three second-order derivatives Nxx(σ), Nxy (σ), and Nyy (σ)



HALEEM et al.: RETINAL AREA DETECTOR FROM SCANNING LASER OPHTHALMOSCOPE (SLO) IMAGES 1475

Fig. 3. (a) GLCM directions and offset. (b) GLCM process using image I [25].

in horizontal (x) and vertical (y) directions. After convolving
the image with the filter bank at a particular channel, the mean
value is taken over of each filter response over all pixels of each
superpixel.

3) Regional Features: The features used to define regional
attributes were included because superpixels belonging artefacts
have irregular shape compared to those belonging the retinal area
in an SLO image. Table II represents the features describing
regional attributes.

The image features are calculated for each superpixel of the
images present in the training set and they form a matrix of the
form as

FM =

[
Atex

R Atex
G Ag

R Ag
G Are

Btex
R Btex

G Bg
R Bg

G Bre

]
(3)

where A and B represent class of true retinal area and class
of artefacts, superscripts tex, re, g represent textural features,
regional features, and gradient based features, respectively, and
subscript R and G represent the red and green channel, respec-
tively. For determining features at different smoothing scales,
both red and green channels of images are convolved with the
Gaussian [23] at scales σ = 1, 2, 4, 8, 16. The textural features
are calculated at the original scale, as well as at five different
smoothing scales so as to accommodate their image response in
the training set after blurring. In this way, the total number of
columns in both channels of Atex and Btex will be 114 making
it 228 altogether. The gradient features has six columns in each
scale making 30 columns for each channel of Ag and Bg so 60
columns in total for each superpixel. As far as regional features
are concerned, except Iμ , they are independent of channel varia-
tion. Therefore, they are calculated only once for the superpixel
so seven columns for Are and Bre (Iμ is calculated for both
red and green channels). In this way, there are the total number
of 295 features in the feature matrix for each superpixel of the
image present in the training set. Each column of the feature
matrix calculated for the particular image is normalized using

z-score normalization [26]. Z-score normalization returns the
scores of the column with zero mean and unit variance.

D. Feature Selection

The main purposes for feature selection are reducing execu-
tion time, determination of features most relevant to the classi-
fication and dimensionality reduction. For feature selection, we
have selected sequential forward selection (SFS) approach.

In the “SFS approach,” the interaction among features is taken
into account. From the available set of features, the feature
with the highest area under the curve (AUC) [27] is selected.
The next feature is chosen in such a way that when it is used
along with the first selected feature, it will give the highest
AUC compared to other nonselected features. The process is
repeated until ten features were selected, since a higher number
of features resulted in a very small improvement in AUC.

The performance of the SFS has been compared against other
feature selection approaches such as “Filter approach” and “Fil-
ter and SFS” approach. In the filter approach, the features are
ranked with respect to their effectiveness in classification and
higher ranked features are thresholded out. In order to determine
most relevant features, an independent evaluation criterion for
binary classification is used [28] and AUC is selected as its eval-
uation measure [27]. The features with higher AUC are ranked
higher, and the features with AUC greater than 0.9 are selected.
In this way, 33 features are selected for classifier construction.
The “Filter and SFS” approach is similar to SFS approach except
that it is applied on the filtered feature set rather than complete
feature set.

The individual and collective performance of the features se-
lected in the feature sets from the above mentioned approaches
are shown in Figs. 4 and 5. The axis of “Feature Index” in
Fig. 4 is ordered according to descending independent evalu-
ation criterion. The axis of “Number of Selected Features” in
Fig. 5 represents the order with which the features are selected
using the SFS approach. We have not applied SFS on the “Filter
approach;” therefore, axis of “Number of Selected Features”
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TABLE I
TEXTURAL FEATURES EXTRACTED USING GLCM

Feature Name Equation Definition

Autocorrelation acorr =
∑
i

∑
j

ijp(i, j ) Linear dependence in GLCM between same index

Cluster Shade C s h a d e =
∑
i

∑
j

(i + j − μx − μy )3 p(i, j ) Measure of skewness or non-symmetry

Cluster Prominence Cp r o m =
∑
i

∑
j

(i + j − μx − μy )4 p(i, j ) Show peak in GLCM around the mean for non-symmetry

Contrast con =
N g∑
i = 1

N g∑
j = 1

|i − j |2 p(i, j ) Local variations to show the texture fineness.

Correlation corr =

∑
i

∑
j

( i j ) p ( i , j )−μ x μ y

σ x σ y
Linear dependence in GLCM between different index

Difference Entropy Hd i f f = −
N g −1∑
i = 0

px −y log(px −y (i)) Higher weight on higher difference of index entropy value

Dissimilarity diss =
∑
i

∑
j

|i − j |p(i, j ) Higher weights of GLCM probabilities away from the diagonal

Energy E =
∑
i

∑
j

p(i, j )2 Returns the sum of squared elements in the GLCM

Entropy H = −
∑
i

∑
j

p(i, j )log(p(i, j )) Texture randomness producing a low value for an irregular GLCM

Homogeneity homom =
∑
i

∑
j

1
1 + ( i−j ) 2 p(i, j ) Closeness of the element distribution in GLCM to its diagonal

Information Measures 1 IM1 = (1 − exp[−2.0(Hx y − H )])0 . 5 Entropy measures

Information Measures 2 IM2 =
E n t r o p y−H x y 2
MAX (H x , H y ) Entropy measures

Inverse Difference Normalized IDN =
∑
i

∑
j

p ( i , j )

1 +
|i−j |
N g

Inverse contrast normalized

Inverse Difference Moment Normalized IDMN =
∑
i

∑
j

p ( i , j )

1 +
( i−j ) 2

N g

Homogeneity normalized

Maximum Probability P rm a x = MAX
(x , y )

p(i, j ) Maximum value of GLCM

Sum average μ s u m =
2 N g∑
i = 2

ipx + y (i) Higher weights to higher index of marginal GLCM

Sum Entropy H s u m = −
2 N g∑
i = 2

px + y log(px + y (i)) Higher weight on higher sum of index entropy value

Sum of Squares: Variance σ s o s =
∑
i

∑
j

(i − μ)2 p(i, j ) Higher weights that differ from average value of GLCM

Sum of Variance σ s u m =
2 N g∑
i = 2

(i − H s u m )px + y (i) Higher weights that differ from entropy value of marginal GLCM

(i, j ) represent rows and columns, respectively; Ng is the number of distinct gray levels in the quantized image; p(i, j ) is the element from normalized GLCM matrix; px (i) and

py (j ) are the marginal probabilities of matrix obtained by summing rows and columns of GLCM, respectively, i.e., px (i) =
N g∑
j = 1

p(i, j ), py (j ) =
N g∑
i = 1

p(i, j ), px + y (k) =
N g∑
i = 1

N g∑
j = 1

p(i, j ), k = i + j − 1 = 1, 2, 3, . . . , 2Ng and px −y (k) =
N g∑
i = 1

N g∑
j = 1

p(i, j ), k = |i − j | + 1 = 1, . . . , Ng ; Hx and Hy are entropies of px and py , respectively, Hx y =

−
∑
i

∑
j

px (i)py (j )log(px (i)py (j )), and Hx y 2 = −
∑
i

∑
j

p(i, j )log(px (i)py (j )).

for “Filter Approach” would be same as that of “Feature In-
dex” in Fig. 4. The features represented by “Feature Index” and
“Number of Selected Features” are shown in Table III. SFS is
computationally intensive as it required 5 min/feature on filtered
feature set and 30 min/feature on complete feature set. But the
results show that the SFS approach performed better compared
to other two approaches despite of the fact that the feature set
also consists of those features which ranked low in independent
evaluation criterion. The Table IV represents the percentage of
different types of features selected in each feature set. The table
shows clear dominance of textural features compared to gradient
features and regional features.

E. Classifier Construction

The classifier is constructed in order to determine the different
classes in a test image. In our case, it is a two class problem:

true retinal area and artefacts. We have applied Artificial Neural
Networks (ANNs). The ANN is the classification algorithm
that is inspired by human and animal brain. It is composed of
many interconnected units called artificial neurons. ANN takes
training samples as input and determines the model that best
fits to the training samples using nonlinear regression. Consider
the Fig. 6 which shows three basic blocks of ANN, i.e., input,
hidden layer (used for recoding or providing representation for
input), and output layer. More than one hidden layer can be used
but in our case, there is only one hidden layer with ten neurons.
The output of each layer is in the form of matrix of floating
values, which can be obtained by sigmoid function as

hW (x) =
1

1 + exp(−WT x + b)
(4)
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TABLE II
REGIONAL FEATURES

Feature Name Equation Definition

Mean Intensity Iμ =

∑
i

∑
j

I s ( i , j )

N s
Mean value of superpixel

Area Ns Number of pixels in Superpixel

Convex Area Ns c Number of pixels in convex area of superpixel

Extent Ext = N s
N s b

Ratio of area to number of pixels in the bounding box

Orientation θs Superpixel angle with respect to x-axis

Solidity Sol = N s
N s c

Ratio of area to convex area

Fig. 4. Plot of independent evaluation criterion. The features are ranked in
descending order of independent evaluation criterion value. In top figure, red
dots for “Filter and SFS approach” represent the ten features selected by applying
SFS on “Filter approach” set. By applying SFS on complete feature set, ten out
of 295 features have been selected as shown in bottom figure (“SFS approach”).

where b is the bias value and W are the weights of input x.
These weights can be determined by backpropagation algo-
rithm, which tends to minimize mean square error value between
desired output and actual output as

err =
1
2
(t − y)2 (5)

Fig. 5. Plot of AUC by selecting the features one by one in different feature
set.

TABLE III
FEATURE SETS OBTAINED USING DIFFERENT FEATURE SELECTION

APPROACHES

Feature Selection Method Feature Symbols

Filter Approach (feature index and number
of selected features)

μ s u m R (16), σ s u m R (16), μ s u m R (8),
NR (16), μ s u m R (4), σ s u m R (8),
μ s u m R (2), μ s u m R (1), μ s u m R ,
σ s u m R (4), σ s u m R (2), NR (8),
σ s u m R (1), acorrR (16), σ s o sR (16),
σ s u m R , NR (4), NR (2), NR (1),
Ny y R (1), Iμ R , Nx x R (1), acorrR (8),
σ s o sR (8), acorrR (4), σ s o sR (4),
Ny y R (2), acorrR (2), σ s o sR (2),
acorrR (1), σ s o sR (1), acorrR , σ s o sR

Filter and SFS Approach (feature index) μ s u m R (16), σ s u m R (16), σ s u m R (8),
μ s u m R , σ s u m R (4), σ s u m R ,
acorrR (8), σ s o sR (8), acorrR (1),
σ s o sR (1)

Filter and SFS Approach (number of
selected features)

μ s u m R (16), σ s o sR (1), σ s u m R (8),
σ s o sR (8), σ s u m R (16), μ s u m R ,
σ s u m R , acorrR (8), acorrR (1),
σ s u m R (4)

SFS Approach (feature index) μ s u m R (16), acorrR (8), σ s o sR (8),
σ s u m G , acorrG , σ s o sG , HG (8),
Ny R (16), HG (1), Hd i f f G (1)

SFS Approach (Number of Selected
Features)

μ s u m R (16), σ s o sG , HG (8),
Ny R (16), σ s o sR (8), Hd i f f G (1),
acorrG , acorrR (8), σ s u m G , HG (1)

“Feature index” represents the order of highest independent evaluation criterion measure,
and “number of selected features” represent the sequence of feature selection in the feature
set. R and G subscripts represent red and green channel, respectively.
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TABLE IV
PERCENTAGE OF DIFFERENT TYPES OF FEATURES ACROSS

DIFFERENT FEATURE SET

Feature Set Textural Features Gradient Features Regional Features

SFS Approach 90% 10% 0%
Filter Approach 72.73% 24.24% 3.03%
Filter and SFS
Approach

100% 0% 0%

Fig. 6. AANs diagram.

where t and y represent the target output and actual output of
the output layer. The minimization of (5) can be represented as

∂err
∂Wi

= (y − t)y(1 − y)xi. (6)

Since it is an iterative process, therefore weights are updated
by delta rule as

Δwi = α(t − y)xi (7)

α represents the step size. The weights were updated until
1000 iterations.

F. Image Postprocessing

After classification of the test image, the superpixels are re-
fined using morphological operation [3], so as to remove mis-
classified isolated superpixels. The morphological closing was
performed so as to remove small gaps among superpixels. The
size of disk structuring element can be a smaller value, say 10.
For better results, we can perform area opening so as to remove
one or two misclassified isolated superpixels.

G. Comparison Study

After the construction of our classifier, we have compared
its performance against different classifiers in terms of accuracy
and computational time. The classifiers have been applied across
different feature sets, which are obtained by using different
feature selection procedures as mentioned in Section III-D. The
classifiers we have selected for comparing the performance of
our classifier are SVMs and k Nearest Neighbours (kNNs) [26].

The idea behind kNN method is to find out samples whose
feature are similar to the classes to be detected. The function,
which we are following in order to determine the similarity
of the features with true retinal area is “Euclidean distance.”
SVM finds a separating hyperplane with the maximal margin in
higher dimensional space. In our comparison study, we are using
nonlinear SVM with radial-based function kernel with default
parameter of (number of features)−1 = 0.1 [29].

IV. EXPERIMENTAL EVALUATION

The images for training and testing have been obtained from
Optos [2] and are acquired using their ultrawide field SLO.
Each image has a FOV of up to 200◦ of the retina in a reso-
lution of 14 μm. The device captures the retinal image with-
out dilation, through a small pupil of 2 mm. The image has
two channels: red and green. The green channel (wavelength:
532 nm) provides information about the sensory retina to reti-
nal pigment epithelium, whereas the red channel (wavelengh:
633 nm) shows deeper structures of the retina toward the
choroid. Each image has a dimension of 3900 × 3072 and each
pixel is represented by 8-bit on both red and green channels.
The dataset is composed of healthy and diseased retinal images;
most of the diseased retinal images are from Diabetic Retinopa-
thy patients. The system has been trained with 28 images and
tested against 76 images.

Fig. 7 compares the classification power of different feature
sets with the help of receiver operating characteristics (ROC).
One of those feature sets include all features calculated. The rest
of other feature sets include features selected by the approaches
discussed in Section III-D. By using SFS approach, ten features
out of 295 features have been selected and their calculation time
is 25 s per image, whereas calculating the complete feature set
can take around 10 min per image. The ROC curves and AUC
values reveal that if the features are selected using the SFS
approach, they can have a classification power almost similar to
the complete feature set while reducing the computational time.

The visual results and the accuracies of different classifiers
among different feature sets has been presented using Dice Coef-
ficient as evaluation metric. The Dice Coefficient is the degree
of overlap between the framework output and the benchmark
obtained from the clinician. The Dice Coefficient is defined as

D(A,B) =
2|A ∩ B|
|A| + |B| (8)

where A and B are the segmented images obtained from the
framework and the benchmark, respectively, |.| represents num-
ber of samples of the region, and ∩ denotes the intersection. Its
value varies between 0 and 1, where a higher value indicates
an increased degree of overlap. Let RA1 and AR1 represent
samples from the retinal area and the artefact area obtained
from the framework, respectively, and RA2 and AR2 be these
samples from the benchmark. The class of superpixels in the
benchmark was decided based on majority of pixels in the su-
perpixel belonging to particular class. Also, |RA1 | + |AR1 | =
|RA2 | + |AR2 |= Nsample , i.e., total number of samples (super-
pixels or pixels) in an image. If we calculate Dice Coefficient
for the image, (8) can be deduced as

DI =
(|RA1 ∩ RA2 | + |AR1 ∩ AR2 |)

Nsample
. (9)

The Dice Coefficient for the retinal area DR and artefacts DA

will be given as

DR =
2|RA1 ∩ RA2 |
|RA1 | + |RA2 |

,DA =
2|AR1 ∩ AR2 |
|AR1 | + |AR2 |

. (10)
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Fig. 7. (a) ROC on the test sets. (b) Magnified version of (a).

TABLE V
AVERAGE CLASSIFICATION ACCURACY

Classifier Filter Approach Filter/SFS Approach SFS Approach

DI DR DA DI DR DA DI DR DA

ANN 89.36% 89.49% 89.22% 88.88% 89.00% 88.75% 90.48% 90.28% 90.68%
SVM 88.48% 88.48% 88.47% 88.41% 88.36% 88.46% 90.93% 90.89% 90.96%
kNN 88.35% 88.53% 88.17% 88.09% 88.24% 87.94% 90.34% 90.17% 90.52%

Degree of overlap has been calculated by taking superpixels as samples.

TABLE VI
COMPARISON OF FRAMEWORK OUTPUT PERFORMANCE

USING DIFFERENT CLASSIFIERS

Classifier Training Time Testing Time DI DR

ANN 30 min 0.013 s 91.93% 91.87%
SVM 12.5 min 8.5 s 92.00% 91.94%
kNN 1.45 s 2.05 s 91.43% 91.31%

The performance is compared with respect to computational time taken
during training and testing and average accuracy. The training time is
calculated for 28 images. Testing time shows the average time taken
by the framework.

Table V compares the performance of different classifiers
across different feature sets. As far as classification accuracy
is concerned, there is a little difference among the outputs of
different classifiers. The advantage of using ANN is its high-
computational efficiency in terms of testing time as shown in
Table VI. Although the training time of ANN is longer compared
to its other two counterparts, the training time is once in a life-
time process and once the model is deployed, it can process
any image. Fig. 9 represents the total time taken by an image to
be processed for automatic annotations. The block diagram and
the Table VI shows that while using ANN, couple of seconds
can be saved per image during automatic–annotation process.
As shown in Table V, SVM although performed better on SFS

feature set compared to ANN and kNN, ANN has the highest
classification accuracy in other two feature sets. This shows that
classification accuracy is highly dependent on type of features
selected.

Fig. 8 shows superpixel classification results and final out-
put after postprocessing of different examples of healthy and
diseased retinal images. ANN is able to achieve the average
accuracy nearer to that of other two classifiers, while saving sig-
nificant computational time when processing millions of images
for automatic annotations.

V. DISCUSSION AND CONCLUSION

Distinguishing true retinal area from artefacts in SLO images
is a challenging task, which is also the first important step to-
ward computer-aided disease diagnosis. In this study, we have
proposed a novel framework for automatic detection of true
retinal area in SLO images. We have used superpixels to repre-
sent different irregular regions in a compact way and reduce the
computing cost. Feature selection enables the most significant
features to be selected and, thus, reduces computing cost too.
A classifier has been built based on selected features to extract
out the retina area. It has been compared to other two classi-
fiers and was compatible while saving the computational time.
The experimental evaluation result shows that our proposed
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Fig. 8. Superpixel classification result of two examples of SLO images. Columns represent different examples of retinal images. Left column are retinal scans
with lesions, whereas right column is the retinal scan from healthy subject. (a) and (b) represent the test images divided into superpixels. (c) and (d) represent
superpixel classification results and (e) and (f) represent output after postprocessing.

framework can achieve an accuracy of 92% in segmentation of
the true retinal area from an SLO image.

Feature selection is necessary so as to reduce computational
time during training and classification. Among different ap-
proaches used for feature selection, the performance of our

feature selection approach surpassed the filter approach and
“Filter and SFS” approaches in terms of classification power.
The comparison of different feature selection approaches shows
that selection of features based on their mutual interaction can
provide the classification power close to that of feature set with
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Fig. 9. Block diagram of deployment stage along with execution time of each
block.

all features. Feature selection is once in a life-time process and
we can compromise on computational time for feature selection
on account of accuracy.

As far as the classifier is concerned, the testing time of ANN
was the lowest compared to other two classifiers. Although the
overall accuracy of SVM was the highest compared to other two
classifiers, the training and testing time is quite long. Although
kNN has the shortest training time, the testing time can be quite
high compared to ANN while processing millions of images.
Compared to SVM, we can tradeoff the overall accuracy of
0.1% on average while saving the testing time of 8 s per image.
As far as images with lesions are concerned [see Fig. 8(a), (c),
and (e)], ANN misclassified 1 or 2 superpixels at the corners,
but they are corrected using morphological postprocessing as
shown in Fig. 8(e).

Our retina detection framework serves as the first step toward
the processing of ultrawidefield SLO images. A complete retinal
scan is possible if the retina is imaged from different eye-steered
angles using an ultrawidefield SLO and, then, montaging the
resulting image. Montaging is possible only if the artefacts are
removed before.
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