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Two Steams After ResNet
Better accuracy vs Better efficiency



Intro.

• Scaling up ConvNets is widely used to achieve better accuracy.
 ResNet can be scaled from ResNet-18 to ResNet-200 by using more layers.

 GPipe achived 84.3% ImageNet top-1 accuracy by scaling up a baseline 
model 4 times larger.

• The most common way is to scale up ConvNets by their depth, width, 
or image resolution.
 In previous work, it is common to scale only one of the three dimensions.

 Though it is possible to scale up two or three dimensions arbitrarily, arbitrary 
scaling requires tedious manual tuning and still often yields sub-optimal 
accuracy and efficiency.



Intro.

• The authors want to study and rethink the process of scaling up 
ConvNets.
 Q: Is there a principled method to scale up ConvNets that can achieve 

better accuracy and efficiency?

• Empirical study shows that it is critical to balance all dimensions of 
network width/depth/resolution, and surprisingly such balance can 
be achieved by simply scaling each of them with constant ratio.

• Based on this observation, authors propose a compound scaling 
methods.



Compound Scaling



Related Work – ConvNet Accuracy

• ConvNets have become increasingly more accurate by going bigger.
 While the 2014 ImageNet winner GoogleNet (Szegedy et al., 2015) achieves 

74.8% top-1 accuracy with about 6.8M parameters, the 2017 ImageNet 
winner SENet (Hu et al., 2018) achieves 82.7% top-1 accuracy with 145M 
parameters.

 Recently, GPipe (Huang et al., 2018) further pushes the state-of-the-art 
ImageNet top-1 validation accuracy to 84.3% using 557M parameters.

• Although higher accuracy is critical for many applications, we have 
already hit the hardware memory limit, and thus further accuracy 
gain needs better efficiency.



Related Work – ConvNet Efficiency

• Deep ConvNets are often over-parameterized.
 Model compression is a common way to reduce model size by trading 

accuracy for efficiency.

 it is also common to handcraft efficient mobile-size ConvNets, such as 
SqueezeNets, MobileNets, and ShuffleNets.

 Recently, neural architecture search becomes increasingly popular in 
designing efficient mobile-size ConvNets such as MNasNet.

• However, it is unclear how to apply these techniques for larger 
models that have much larger design space and much more 
expensive tuning cost.



Related Work – Model Scaling

• There are many ways to scale a ConvNet for different resource 
constraints
 ResNet can be scaled down (e.g., ResNet-18) or up (e.g.,ResNet-200) by 

adjusting network depth (#layers).

 WideResNet and MobileNets can be scaled by network width (#channels).

 It is also well-recognized that bigger input image size will help accuracy with 
the overhead of more FLOPS.

• The Network depth and width are both important for ConvNets
expressive power, it still remains an open question of how to 
effectively scale a ConvNet to achieve better efficiency and accuracy.



Problem Formulation
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We can define ConvNets as:



Problem Formulation

• Unlike regular ConvNet designs that mostly focus on finding the best 
layer architecture Fi, model scaling tries to expand the network 
length (Li), width (Ci), and/or resolution (Hi;Wi) without changing Fi
predefined in the baseline network.

• By fixing Fi, model scaling simplifies the design problem for new 
resource constraints, but it still remains a large design space to 
explore different Li;Ci;Hi;Wi for each layer.



Problem Formulation

• In order to further reduce the design space, the authors restrict that 
all layers must be scaled uniformly with constant ratio.

coefficients for scaling 
network width, depth and 

resolution



Scaling Dimensions – Depth 

• The intuition is that deeper ConvNet can capture richer and more 
complex features, and generalize well on new tasks.

• However, the accuracy gain of very deep network diminishes.
 For example, ResNet-1000 has similar accuracy as ResNet-101 even though it 

has much more layers.



Scaling Dimensions – Width

• Scaling network width is commonly used for small size models.

• As discussed in WideResNet, wider networks tend to be able to capture more 
fine-grained features and are easier to train.

• However, extremely wide but shallow networks tend to have difficulties in 
capturing higher level features.

• And the accuracy quickly saturates when networks become much wider with 
larger w.



Scaling Dimensions – Resolution

• With higher resolution input images, ConvNets can potentially capture more 
fine-grained patterns.
 Starting from 224x224 in early ConvNets, modern ConvNets tend to use 299x299 or 331x331 

for better accuracy. Recently, GPipe achieves state-of-the-art ImageNet accuracy with 
480x480 resolution.

• Higher resolutions improve accuracy, but the accuracy gain diminishes for very 
high resolutions.



Scaling Dimensions

Observation 1 

Scaling up any dimension of network width, depth, or resolution 
improves accuracy, but the accuracy gain diminishes for bigger models.



Compound Scaling

• Intuitively, the compound scaling method 
makes sense because if the input image is 
bigger, then the network needs more layers to 
increase the receptive field and more channels 
to capture more fine-grained patterns on the 
bigger image.

• If we only scale network width w without 
changing depth (d=1.0) and resolution (r=1.0), 
the accuracy saturates quickly. 

• With deeper (d=2.0) and higher resolution 
(r=2.0), width scaling achieves much better 
accuracy under the same FLOPS cost.



Compound Scaling

Observation 2 

In order to pursue better accuracy and efficiency, it is critical to 
balance all dimensions of network width, depth, and resolution during 
ConvNet scaling.



Compound Scaling Method

• , ,  are constants that can be determined by a small grid search.

• Intuitively,  is a user-specified coefficient that controls how many 
more resources are available for model scaling.



Compound Scaling Method

• Notably, the FLOPS of a regular convolution op is proportional to d, 
w2, r2.
 Doubling network depth will double FLOPS, but doubling network width or 

resolution will increase FLOPS by four times. Since convolution ops usually 
dominate the computation cost in ConvNets, scaling a ConvNet with above 
equation will approximately increase total FLOPS by 

• In this paper, total FLOPs approximately increase by 



EfficientNet Architecture

• Inspired by MNasNet, the authors develop our baseline network by 
leveraging a multi-objective neural architecture search that 
optimizes both accuracy and FLOPS.

• Optimization Goal : 

• Latency is not included in the optimization goal since they are not 
targeting any specific hardware device.

where
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EfficientNet-B0 Baseline Network



EfficientNet-B1 to B7

• Step 1: 

We first fix  = 1, assuming twice more resources available and do a 
small grid search of , , .

The best values for EfficientNet-B0 are =1.2, =1.1, =1.15.

• Step 2:

We then fix , ,  as constants and scale up baseline network with 
different  to obtain EfficientNet-B1 to B7.



Scaling Up MobileNets and ResNets



ImageNet Results for EfficientNet



ImageNet Results for EfficientNet



Inference Latency Comparison



Transfer Learning Results for EfficientNets

<Transfer Learning Datasets>



Transfer Learning Results for EfficientNets



Discussion

• Disentangling the contribution of proposed scaling method from the 
EfficientNet architecture.



Class Activation Maps




