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Intro.

* Scaling up ConvNets is widely used to achieve better accuracy.
= ResNet can be scaled from ResNet-18 to ResNet-200 by using more layers.

= GPipe achived 84.3% ImageNet top-1 accuracy by scaling up a baseline
model 4 times larger.

* The most common way is to scale up ConvNets by their depth, width,
or image resolution.
" |n previous work, it is common to scale only one of the three dimensions.

* Though it is possible to scale up two or three dimensions arbitrarily, arbitrary
scaling requires tedious manual tuning and still often yields sub-optimal
accuracy and efficiency.



Intro.

* The authors want to study and rethink the process of scaling up
ConvNets.

= Q: Is there a principled method to scale up ConvNets that can achieve
better accuracy and efficiency?

* Empirical study shows that it is critical to balance all dimensions of
network width/depth/resolution, and surprisingly such balance can
be achieved by simply scaling each of them with constant ratio.

* Based on this observation, authors propose a compound scaling
methods.



Compound Scaling
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Related Work — ConvNet Accuracy

* ConvNets have become increasingly more accurate by going bigger.

= While the 2014 ImageNet winner GoogleNet (Szegedy et al., 2015) achieves
74.8% top-1 accuracy with about 6.8M parameters, the 2017 ImageNet
winner SENet (Hu et al., 2018) achieves 82.7% top-1 accuracy with 145M
parameters.

= Recently, GPipe (Huang et al., 2018) further pushes the state-of-the-art
ImageNet top-1 validation accuracy to 84.3% using 557M parameters.

* Although higher accuracy is critical for many applications, we have
already hit the hardware memory limit, and thus further accuracy
gain needs better efficiency.



Related Work — ConvNet Efficiency

* Deep ConvNets are often over-parameterized.

* Model compression is a common way to reduce model size by trading
accuracy for efficiency.

" it is also common to handcraft efficient mobile-size ConvNets, such as
SqueezeNets, MobileNets, and ShuffleNets.

= Recently, neural architecture search becomes increasingly popular in
designing efficient mobile-size ConvNets such as MNasNet.

* However, it is unclear how to apply these techniques for larger
models that have much larger design space and much more
expensive tuning cost.



Related Work — Model Scaling

* There are many ways to scale a ConvNet for different resource
constraints

= ResNet can be scaled down (e.g., ResNet-18) or up (e.g.,ResNet-200) by
adjusting network depth (#layers).

= WideResNet and MobileNets can be scaled by network width (#channels).

" |tis also well-recognized that bigger input image size will help accuracy with
the overhead of more FLOPS.

* The Network depth and width are both important for ConvNets
expressive power, it still remains an open question of how to
effectively scale a ConvNet to achieve better efficiency and accuracy.




Problem Formulation

We can define ConvNets as:
mput tensor
spatial

dimension
channel
O dimension
H W

/ F.is repeated L, times in stage i

stage

N=F.0.0F6F(X)

— szl...



Problem Formulation

* Unlike regular ConvNet designs that mostly focus on finding the best
ayer architecture F, model scaling tries to expand the network
ength (L), width (C), and/or resolution (H;W.) without changing F,
oredefined in the baseline network.

* By fixing F,, model scaling simplifies the design problem for new
resource constraints, but it still remains a large design space to
explore different L;C;H,; W, for each layer.



Problem Formulation

* In order to further reduce the design space, the authors restrict that
all layers must be scaled uniformly with constant ratio.

max  Accuracy(N(d,w,r))

d,w,r

~d-L;
S.t. N(d- wg T‘) — O "Fi (X(?‘-ﬁi,?‘-ﬁ/’i:w-éi))
1=1...s

coefficients for scaling MemOI‘y (N) < target_memory
network width, depth and

resolution FLOPS(N) < target_flops



Scaling Dimensions — Depth

* The intuition is that deeper ConvNet can capture richer and more
complex features, and generalize well on new tasks.

* However, the accuracy gain of very deep network diminishes.

* For example, ResNet-1000 has similar accuracy as ResNet-101 even though it
has much more layers.
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Scaling Dimensions —Width

* Scaling network width is commonly used for small size models.

* As discussed in WideResNet, wider networks tend to be able to capture more
fine-grained features and are easier to train.

* However, extremely wide but shallow networks tend to have difficulties in
capturing higher level features.

* And the accuracy quickly saturates when networks become much wider with
larger w. 8l
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Scaling Dimensions — Resolution

* With higher resolution input images, ConvNets can potentially capture more
fine-grained patterns.

= Starting from 224x224 in early ConvNets, modern ConvNets tend to use 299x299 or 331x331

for better accuracy. Recently, GPipe achieves state-of-the-art ImageNet accuracy with
480x480 resolution.

* Higher resolutions improve accuracy, but the accuracy gain diminishes for very

high resolutions. .

FLOPS (Billions)



Scaling Dimensions

Observation 1

Scaling up any dimension of network width, depth, or resolution
improves accuracy, but the accuracy gain diminishes for bigger models.



Compound Scaling

* Intuitively, the compound scaling method
makes sense because if the input image is
bigger, then the network needs more layers to

increase the receptive field and more channels

to capture more fine-grained patterns on the
bigger image.

* If we only scale network width w without
changing depth (d=1.0) and resolution (r=1.0),
the accuracy saturates quickly.

* With deeper (d=2.0) and higher resolution
(r=2.0), width scaling achieves much better
accuracy under the same FLOPS cost.

ImageNet Top1 Accuracy (%)
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Compound Scaling

Observation 2

In order to pursue better accuracy and efficiency, it is critical to
balance all dimensions of network width, depth, and resolution during

ConvNet scaling.



Compound Scaling Method

depth: d = a?
width: w = 3¢
resolution: r =

S.l. « - _{32 . "“_,-2 ~ 2

* a, [3, y are constants that can be determined by a small grid search.

* Intuitively, ¢ is a user-specified coefficient that controls how many
more resources are available for model scaling.



depth: d = o
Compound Scaling Method widih: 10 = 7°
resolution: r = 2

S.L. v - ;'32 --'}-2 ~ 9

* Notably, the FLOPS of a regular convolution op is proportional to d,
W2, 2.

* Doubling network depth will double FLOPS, but doubling network width or

resolution will increase FLOPS by four times. Since convolution ops usually

dominate the computation cost in ConvNets, scaling a ConvNet with above
equation will approximately increase total FLOPS by (o - 52 - 42)°

* In this paper, total FLOPs approximately increase by 2



EfficientNet Architecture

* Inspired by MNasNet, the authors develop our baseline network by
leveraging a multi-objective neural architecture search that
optimizes both accuracy and FLOPS.

Target FLOPS

* Optimization Goal: AC'C'(m) x [F'LOPS(m) /T .1ere =-0.07

* Latency is not included in the optimization goal since they are not
targeting any specific hardware device.
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EfficientNet-B1 to B7

* Step 1:
We first fix ¢ = 1, assuming twice more resources available and do a
small grid search of ., 3, 7.

The best values for EfficientNet-Bo are a.=1.2, B=1.1, y=1.15.
o B2 a2
* Step 2:

We then fix o, 3, ¥ as constants and scale up baseline network with
different ¢ to obtain EfficientNet-Ba to B7.



Scaling Up MobileNets and ResNets

Model FLOPS Top-1 Acc.
Baseline MobileNetV1 (Howard et al., 2017) 0.6B 70.6%
Scale MobileNetV 1 by width (w=2) 2.2B 14.2%
Scale MobileNetV 1 by resolution (r=2) 2.2B 12.7%
compound scale (d=1.4, w=1.2, r=1.3) 2.3B 75.6 %
Baseline MobileNetV2 (Sandler et al., 2018) 0.3B 72.0%
Scale MobileNetV2 by depth (d=4) 1.2B 76.8%
Scale MobileNetV?2 by width (w=2) 1.1B 16.4%
Scale MobileNetV?2 by resolution (r=2) 1.2B 74.8%
MobileNetV2 compound scale 1.3B 77.4%
Baseline ResNet-50 (He et al., 2016) 4.1B 76.0%
Scale ResNet-50 by depth (d=4) 16.2B 78.1%
Scale ResNet-30 by width (w=2) 14.7B T7.7%
Scale ResNet-50 by resolution (r=2) 16.4B T7.5%
ResNet-50 compound scale 16.7B 78.8 %




ImageNet Results for EfficientNet

Model | Top-1 Acc.  Top-5 Acc. || #Params  Ratio-to-EfficientNet || #FLOPS  Ratio-to-EfficientNet
EfficientNet-B0 76.3% 93.2% 5.3M Ix 0.39B Ix
ResNet-50 (He et al., 2016) 76.0% 93.0% 26M 4.9x 4.1B 11x
DenseNet-169 (Huang et al., 2017) 76.2% 093.2% 14M 2.6x 3.5B 8.9x
EfficientNet-B1 78.8% 94.4% 7.8M Ix 0.70B Ix
ResNet-152 (He et al., 2016) 77.8% 93.8% 60M 7.6x 11B 16x
DenseNet-264 (Huang et al., 2017) 77.9% 93.9% 34M 4.3x 6.0B 8.6x
Inception-v3 (Szegedy et al., 2016) 78.8% 94.4% 24M 3.0x 5.7B 8.1x
Xception (Chollet, 2017) 79.0% 94.5% 23M 3.0x 8.4B 12x
EfficientNet-B2 79.8% 94.9% 9.2M Ix 1.0B Ix
Inception-v4 (Szegedy et al., 2017) 80.0% 95.0% 48M 5.2x 13B 13x
Inception-resnet-v2 (Szegedy et al., 2017) 80.1% 95.1% 56M 6.1x 13B 13x
EfficientNet-B3 81.1% 95.5% 12M Ix 1.8B Ix
ResNeXt-101 (Xie et al., 2017) 80.9% 95.6% 84M 7.0x 32B 18x
PolyNet (Zhang et al., 2017) 81.3% 95.8% 92M 7.7x 35B 19x
EfficientNet-B4 82.6% 96.3% 19M Ix 4.2B Ix
SENet (Hu et al., 2018) 82.7% 96.2% 146M 7.7x 42B 10x
NASNet-A (Zoph et al., 2018) 82.7% 96.2% 80M 4.7x 24B 5.7x
AmoebaNet-A (Real et al., 2019) 82.8% 96.1% 87TM 4.6x 23B 5.5x
PNASNet (Liu et al., 2018) 82.9% 96.2% 86M 4.5x 23B 6.0x
EfficientNet-B5 83.3% 96.7 % JoM Ix 9.9B Ix
AmoebaNet-C (Cubuk et al., 2019) 83.5% 96.5% 155M 5.2x 41B 4.1x
EfficientNet-B6 | 84.0% 96.9% || 43M 1x | 19B Ix
EfficientNet-B7 84.4% 97.1% 66M Ix 37B Ix
GPipe (Huang et al., 2018) 84.3% 97.0% 557TM 8.4x - -

We omit ensemble and multi-crop models (Hu et al., 2018), or models pretrained on 3.5B Instagram images (Mahajan et al., 2018).



ImageNet Results for EfficientNet
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Inference Latency Comparison

Table 4. Inference Latency Comparison — Latency is measured
with batch size 1 on a single core of Intel Xeon CPU E5-2690.

Acc. @ Latency

Acc. @ Latency

ResNet-152
EfficientNet-B1
Speedup

77.8% @ (.554s
78.8% @ (.098s
5.7x

GPipe
EfficientNet-B7
Speedup

84.3% @ 19.0s
84.4% @ 3.1s
6.1x




Transfer Learning Results for EfficientNets

Table 5. EfficientNet Performance Results on Transfer Learning Datasets. Our scaled EfficientNet models achieve new state-of-the-
art accuracy for 5 out of 8 datasets, with 9.6x fewer parameters on average.

Comparison to best public-available results Comparison to best reported results
Model Acc.  #Param Our Model Acc. #Param(ratio) || Model Acc. #Param Our Model Acc. #Param(ratio)

CIFAR-10 NASNet-A  98.0% &5M EfficientNet-BO 98.1% AM (21x) TGpipe 99.0%  556M  EfficientNet-B7  98.9% 64M (8.7x)
CIFAR-100 NASNet-A  87.5% &§5M EfficientNet-BO 88.1% IAM (21x) Gpipe 91.3% 556M  EfficientNet-B7  91.7% 64M (8.7x)
Birdsnap Inception-v4  81.8% 41M EfficientNet-B5S 82.0% 28M (1.5%) GPipe  83.6% 556M  EfficientNet-B7 84.3% 64M (8.7x)
Stanford Cars Inception-v4  93.4% 41M EfficientNet-B3  93.6% 10M (4.1x) IDAT  94.8% - EfficientNet-B7  94.7% -
Flowers Inception-v4d  98.5% 41M EfficientNet-BS  98.5% 28M (1.5x) DAT 97.7% - EfficientNet-B7  98.8 % -
FGVC Aircraft Inception-v4d  90.9% 41M EfficientNet-B3  90.7% 10M (4.1x) DAT 92.9% - EfficientNet-B7 92.9% -
Oxford-IIIT Pets || ResNet-152 94.5% 58M EfficientNet-B4 94.8% 17M (5.6x) GPipe 95.9%  556M  EfficientNet-B6  95.4% 41M (14x)
Food-101 Inception-v4  90.8% 41M EfficientNet-B4 91.5% 17M (2.4x) GPipe  93.0% 556M  EfficientNet-B7  93.0% 64M (8.7x)
Geo-Mean | 4.7x) | (9.6x)

TGPipe (Huang et al., 2018) trains giant models with specialized pipeline parallelism library.
fDAT denotes domain adaptive transfer learning (Ngiam et al., 2018). Here we only compare ImageNet-based transfer learning results.
Transfer accuracy and #params for NASNet (Zoph et al., 2018), Inception-v4 (Szegedy et al., 2017), ResNet-152 (He et al., 2016) are from (Kornblith et al., 2019).

<Transfer Learning Datasets>

Dataset | Train Size  Test Size #Classes
CIFAR-10 (Krizhevsky & Hinton, 2009) 50,000 10,000 10
CIFAR-100 (Krizhevsky & Hinton, 2009) 50,000 10,000 100
Birdsnap (Berg et al., 2014) 47,386 2,443 500
Stanford Cars (Krause et al., 2013) 8,144 8,041 196
Flowers (Nilsback & Zisserman, 2008) 2,040 6,149 102
FGVC Aircraft (Maji et al., 2013) 6,667 3,333 100
Oxford-IIIT Pets (Parkhi et al., 2012) 3,680 3,369 37
Food-101 (Bossard et al., 2014) 75,750 25,250 101




Transfer Learning Results for EfficientNets
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Discussion

* Disentangling the contribution of proposed scaling method from the
EfficientNet architecture.
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Class Activation Maps
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Model FLOPS Top-1 Acc.
Baseline model (EfficientNet-B0) 0.4B 76.3%
Scale model by depth (d=4) 1.8B 79.0%
Scale model by width (w=2) 1.8B 78.9%
Scale model by resolution (r=2) 1.9B 79.1%
Compound Scale (d=1.4, w=1.2, r=1.3) 1.8B 81.1%
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